
	
Understanding	and	Propagating	the	Essence	of	Successful	CS	Education	Research	Projects	

	
Proceedings	of	the	UP	CS	Ed	Workshop	at															
the	12th	International	Computing	Education	
Research	conference	
	
Melbourne,	Australia,	September	8	–	12,	2016	
	
Workshop	Co-Organizers:	Eileen	Kraemer	and	Murali	Sitaraman	
	
Proceedings	Editor:	Aubrey	Lawson	
	
	 	

	2	

UP	CS	Ed	Research	

Understanding	and	Propagating	the	Essence	of	Successful	CS	Education	Research	
Projects	

A	2013	report	from	a	joint	committee	of	the	U.S.	Department	of	Education(ED)	and	the	US.	
National	Science	Foundation	(NSF),	Common	Guidelines	for	Education	Research	and	
Development	(NSF	13-126)	describes	shared	understandings	of	the	roles	of	various	types	
of	research	in	generating	evidence	about	strategies	and	interventions	for	increasing	
student	learning.	They	identify	six	types	of	research:	

1. Foundational	Research	
2. Early-Stage	or	Exploratory	Research	
3. Design	and	Development	Research	
4. Efficacy	Research	
5. Effectiveness	Research	
6. Scale-up	Research	

For	each	type	of	research,	the	guidelines	characterize	the	elements	of	such	research:	
purpose,	required	theoretical	and	empirical	justifications,	expectations	for	research	design	
and	expected	products,	and	expectations	for	review.	

In	this	NSF-funded	workshop	we	seek	to	explore	the	space	of	successful	CS	Education	
Research	projects	conducted	by	ICER	attendees,	identify	exemplars	in	each	of	the	six	
categories,	and	discuss	how	best	to	disseminate	these	guidelines	to	current	and	
prospective	researchers	in	the	field.	Outcomes	of	the	workshop	will	include:	

• e-proceedings	
• Publications	including	in	an	ACM	magazine	and	an	ACM	SIGCSE	special	session		
• Topics	for	a	workshop	at	SIGCSE	for	current	and	prospective	CS	Education	researchers	
• Other	dissemination	efforts	

Workshop	attendees	will	be	asked	to	present	and	describe	their	past	or	current	research	
project	in	terms	of	the	elements	in	the	guidelines	(purpose,	justifications,	design,	products,	
etc.)	and	to	participate	in	discussions	on	how	to	promote	the	guidelines	to	prospective	
researchers.		

	 	

	3	

UP	CS	Ed	Research	Workshop	Organization	

This	workshop	is	organized	by	the	Clemson	Consortium	for	Computing	&	Education	with	
support	from	the	US	National	Science	Foundation.	

Organizing	committee	

Eileen	Kraemer	and	Murali	Sitaraman	(co-chairs)	
School	of	Computing,	Clemson	University	
etkraem@clemson.edu,	msitara@clemson.edu	

Russell	A.	Marion	II,	S.	Megan	Che,	Michelle	Patrick	Cook	
Eugene	T.	Moore	School	of	Education,	Clemson	University	

	
	

	
	

	
	
	

	
	

	 	

	4	

Contents	
	
Programming	Problem	Solving	Pedagogy		………………………………………………………………………5		
Authors:	D.	Loksa,	A.J.	Ko,	W.	Jernigan,	A.	Oleson,	C.	Mendez,	M.M.	Burnett		
	
Plagiarism	and	Related	Issues	in	Assessments	Not	Involving	Text	……………………………………7	
Authors:	Simon,	B.	Cook,	J.	Sheard,	C.	Johnson,	A.	Carbone,	M.	Minichiello,	and	C.	Lawrence		
	
Data-driven	Support	for	Novice	Programmers………………………………………………………….……11	
Authors:	T.	W.	Price,	T.	Barnes	
	
Automated	 Tutor	 for	 Pinpointing	 Code	 Reasoning	 Obstacles	 and	 Improving	 Student	
Understanding	……………………………………………………………………………………………..………………14	
Authors:	M.	Cook,	J.	O.	Hallstrom,	J.	E.	Hollingsworth,	M.	Pfister,	and	M.	Sitaraman		
	
IUSE:	 Design,	 Development,	 and	 Implementation	 Projects:	 Computational	 Creativity	 to	
Improve	CS	Education	for	CS	and	non-CS	Undergraduates	………………………………………..……17	
Authors:	D.	F.	Shell,	L-K.	Soh,	E.	Ingraham,	B.	Moore,	S.	Ramsey	
	
Gidget	–	A	game	for	computing	education	…………………………………….………………………….……21	
Authors:	M.	J.	Lee		
	
Empirical	CSED………………………………………………………………………………….(video	presentation)		
Authors:	J.	C.	Carver,	S.	Heckman,	M.	Sherriff		
	
Applying	Complexity	Leadership	Theory	to	the	Adoption	of	Active	Learning	Practices…....25	
Authors:	E.	Kraemer,	M.	Sitaraman,	R.	Marion,	C.	Kennedy,	X.	Jiang	
	
Case	Studies	of	Programming	Problems…………………………………………………………...…..……..…28	
Authors:	M.	Linn	and	M.	Clancy		
	
Effectiveness	of	Analogies	in	CS	Education……………………………………………...………...………..….33	
Authors:	P.	Cao,	L.	Porter,	D.	Zingaro	
	 	

	5	

Research	Type:	Effectiveness	Study	
Research	Title:	Programming	Problem	Solving	Pedagogy	

	

Authors:	Loksa,	D.,	Ko,	A.J.,	Jernigan,	W.,	Oleson,	A.,	Mendez,	C.,	Burnett,	M.M.	

	

Contact	Information:	ajko@uw.edu	

	

Purpose	
The	goal	of	this	study	was	to	investigate	the	effectiveness	of	a	new	form	of	programming	problem	
solving	pedagogy	on	novice	high	school	students’	problem	solving	productivity.	

	
Justification		
Programming	is	a	difficult	task	that	it	requires	people	to	plan,	organize,	and	reflect	on	their	work	in	
order	to	select	appropriate	strategies	to	make	progress.	Unfortunately,	in	most	computing	
education	settings,	instructors	provide	little	guidance	or	scaffolding	on	how	to	approach	problem	
solving,	leaving	students	to	develop	their	own	process.	This	causes	many	students	to	struggle	to	
even	solve	simple	problems.	Prior	work	has	investigated	some	approaches	to	teaching	problem	
solving,	including	case	studies	and	worked	examples,	but	neither	of	these	help	students	the	type	of	
self-awareness	necessary	to	regulate	their	problem	solving	activities.	In	this	project,	we	explored	an	
approach	that	explicitly	teaches	learners	about	six	distinct	phases	of	programming	problem	solving,	
and	develops	learner	awareness	about	which	phase	they	are	in,	whether	their	current	strategy	is	
effective,	and	why.	This	approach	sought	to	develop	self-regulation	skills	in	learners,	improving	
their	ability	to	select	appropriate	strategies	for	solving	programming	problems	throughout	their	
process.	

	
Research	Plan		
To	evaluate	this	approach,	we	offered	two	2-week	summer	camps	for	high	school	aged	learners	
who	did	not	have	prior	programming	experience.	Forty-eight	students	enrolled	in	either	a	3-hour	
morning	or	afternoon	camp.	In	both	camps,	students	learned	the	basics	of	HTML,	CSS,	and	
JavaScript,	and	were	then	given	a	set	of	requirements	to	meet	for	a	personal	website	that	was	
architected,	but	not	implemented.	Students	were	tasked	with	meeting	these	requirements	over	four	
days.	The	treatment	group	received	two	additional	forms	of	instruction:	1)	a	45-minute	lecture	on	
the	six	problem	solving	stages	in	programming,	and	2)	when	students	asked	for	help	the	TA	would	
ask	the	student	to	explain	what	stage	they	were	in,	what	strategy	they	were	using,	and	whether	it	
was	working,	and	then	provide	the	help	provided	to	both	groups.	During	the	camp,	we	gathered	
daily	measures	of	self-efficacy,	growth	mindset,	help	requests,	and	metacognitive	awareness.	At	the	
end	of	the	camp,	we	counted	the	number	of	requirements	each	student	had	satisfied	each	day	and	
by	the	end	of	the	camp.		

	6	

	
Findings	
The	problem	solving	instruction	and	prompts	significantly	increased	the	number	of	requirements	
met,	shifted	help	requests	from	design	to	debugging,	led	to	significantly	higher	programming	self-
efficacy,	and	significantly	higher	growth	mindset.	Additionally,	students	in	the	experimental	
condition	demonstrated	significantly	greater	ability	to	recall	and	describe	their	problem	solving	
process	at	the	end	of	each	day.	This	suggests	that	the	mechanism	by	which	problem	solving	
productivity	increased	was	via	the	predicted	route	of	improved	self-regulation.	These	significant	
differences	emerged	over	the	course	of	five-days	of	programming,	suggesting	that	the	intervention	
took	time	produce	meaningful	changes	in	each	students’	problem	solving	process.	These	results	
have	direct	implications	for	problem	solving	instruction	in	introductory	programming	courses.	

	
Publications	and	Links	to	Relevant	Webpages	
Loksa,	D.,	Ko,	A.	J.,	Jernigan,	W.,	Oleson,	A.,	Mendez,	C.	J.,	&	Burnett,	M.	M.	(2016).	Programming,	
problem	solving,	and	self-awareness:	effects	of	explicit	guidance.	ACM	Conference	on	Human	Factors	
in	Computing	Systems,	1449-1461.	

	

	

				

	

		

		
	 	

	7	

Research	Type:	Early-Stage	or	Exploratory	Research					
	

Research	Title:	Plagiarism	and	Related	Issues	in	Assessments	Not	Involving	Text	

	

Author:	Simon	

	

Project	co-authors:	Beth	Cook,	Judy	Sheard,	Chris	Johnson,	Angela	Carbone,	Mario	
Minichiello,	Chris	Lawrence	

	

Contact	Information:	simon@newcastle.edu.au	

					

Purpose	
The	project	set	out	to	investigate	academics’	and	students’	understandings	of	academic	integrity	in	
assessment	items	not	involving	text;	for	example,	computer	programs	and	visual	designs,	as	
opposed	to	essays.	The	findings	would	be	expected	to	inform	the	development	of	definitions	and	
guidelines	that	would	in	turn	inform	the	revision	of	policies	and	practices	in	academic	integrity,	in	
the	recognition	that	what	works	for	essays	does	not	necessarily	work	equally	well	for	other	types	of	
assessment.	The	ultimate	goal	would	be	educational	approaches	that	would	positively	alter	the	
academic	practices	of	academics	and	students	in	computing	and	in	other	areas	of	study	that	use	
assessment	items	unlike	essays.	

	

Justification	
The	project	was	sparked	by	the	researchers’	observations	that	the	principles	and	practices	of	
academic	integrity	might	not	apply	uniformly	across	all	forms	of	assessment:	that	policies	and	
examples	couched	in	terms	of	direct	and	indirect	quotation,	paraphrasing,	in-text	references,	
reference	lists,	and		use	of	the	words	of	others,	might	not	apply	to	such	assessment	items	as	a	
mathematical	proof,	a	computer	program,	or	a	visual	design.	Likewise,	the	text-matching	methods	
used	as	a	first	step	in	determining	possible	breaches	of	academic	integrity	might	not	be	applicable	
to	these	non-textual	assessment	items.	

	

If	these	observations	were	substantiated,	it	was	likely	either	that	academic	integrity	requirements	
were	being	ignored	because	they	were	deemed	inappropriate,	or	that	they	were	being	applied	in	a	
literal	manner	that	was	in	fact	inappropriate	for	the	type	of	assessment	item	in	question.	Either	of	
these	would	be	educationally	unacceptable.	The	project	therefore	set	out	to	determine	whether	the	
observations	could	be	substantiated.	

	8	

Research	Plan	
The	project	set	out	to	answer	the	following	questions	about	assessment	items	not	involving	text:	

•	 What	do	academics	and	students	in	these	areas	think	constitutes	a	breach	of	academic	
integrity?	

•	 What	do	academics	and	students	in	these	areas	think	might	not	be	a	breach	of	academic	
integrity,	even	though	in	a	text-based	area	it	might	be?	

•	 What	do	academics	do	to	inform	students	as	to	the	expected	standard	of	integrity?	

•	 What	do	academics	do	to	detect	similarities	that	might	suggest	academic	misconduct?	(For	
example,	do	they	use	automated	tools	or	simply	their	own	experience	and	awareness?)	

•	 How	do	academics	deal	with	academic	misconduct	when	it	is	discovered?	

•	 Are	there	areas	(such	as	perhaps	computer	programming)	in	which	academics	and/or	
students	think	that	there	is	only	one	correct	answer,	so	copying	cannot	be	detected?	

•	 Are	there	areas	(such	as	perhaps	visual	images)	in	which	academics	and/or	students	think	
that	every	answer	is	unique,	so	copying	is	acceptable	so	long	as	one	personalises	the	copy?	

•	 To		what		extent		do		academics		in		these		areas		believe		that		university		policies		for		
academic	integrity	based	on	text	are	adequate	for	non-text-based	assessments?	

	

In	addition	to	a	thorough	literature	review,	the	research	design	involved	focus	groups	and	a	major	
online	survey.	The	focus	groups,	to	be	conducted	among	academics	and	among	students	at	three	
participating	universities,	would	tease	out	the	issues	and	inform	the	design	of	the	survey.	There	is	
no	guideline	for	the	number	of	focus	groups	required	for	this	purpose,	but	it	was	expected	that	
findings	from	the	literature,	the	researchers’	own	experiences,	and	six	or	more	focus	groups	would	
adequately	inform	the	survey	design.	The	survey	would	be	conducted	online,	with	invitations	sent	
to	all	universities	in	Australia.	As	the	project	was	an	Australian	one,	conducted	with	Australian	
government	funding,	that	appeared	to	be	appropriate	coverage.	

	

The	focus	group	transcripts	would	be	analysed	by	standard	qualitative	analysis	procedures,	and	the	
survey	data	by	standard	qualitative	and	quantitative	procedures.	

	

Findings	
The	project	made	many	findings.	A	few	of	the	more	interesting	ones	are	listed	here.	

	

•	 Students	and	academics	in	computing	and	visual	design	believe	that	their	university’s	
academic	integrity	policies	do	not	usefully	apply	to	assessments	in	their	disciplines.	

	9	

•	 While	there	are	standard	ways	in	an	essay	of	referencing	material	from	external	sources,	
there	are	no	such	standard	ways	in	computing	or	in	visual	design.	

•	 There	is	no	universal	agreement	that	referencing	of	external	material	is	necessary	in	these	
disciplines	as	it	is	for	essays.	

•	 Students	and	academics	in	computing	have	significantly	different	perceptions	regarding	
certain	practices	in	essay	assessments	and	the	parallel	practices	in	computing	assessments.	

•	 Students	and	academics	in	visual	design	have	significantly	different	perceptions	regarding	
certain	practices	in	essay	assessments	and	the	parallel	practices	in	design	assessments.	

•	 There	are	significant	differences	between	the	numbers	who	consider	certain	practices	to	be	
plagiarism	or	collusion	and	the	numbers	who	consider	those	practices	to	be	unacceptable.	

•	 It	is	understood	that	designs	are	necessarily	based	on	other	designs,	and	there	is	no	
universally	accepted	requirement	in	design	to	identify	and	reference	external	sources	of	
inspiration.	

•	 It	is	generally	expected	that	computing	practitioners	will	reuse	existing	algorithms	and	code	
where	possible,	and	there	is	no	widely	accepted	requirement	to	reference	material	so	used.	

	

The	findings	certainly	support	the	initial	premise	that	further	work	is	required	to	define	and	guide	
academic	integrity	practices	and	policies	in	areas	of	study	that	use	assessment	items	not	involving	
essays	and	similar	prose	works.	That	design	and	development	work	is	beyond	the	scope	of	the	
original	funded	project,	but	is	now	proceeding	separately.	

	

Publications	and	Links	to	Relevant	Webpages	

Simon,	Beth	Cook,	Judy	Sheard,	Angela	Carbone,	Chris	Johnson	(2013).	Academic	integrity:	
differences	between	programming	assessments	and	essays.	13th	International	Conference	on	
Computing	Education	Research	–	Koli	Calling	2013,	Koli,	Finland,	November	2013,	23-32.	

Simon,	Beth	Cook,	Mario	Minichiello,	Chris	Lawrence	(2014).	Academic	integrity:	differences	
between	design	assessments	and	essays.	Design	Research	Society	annual	conference,	Umeå,	
Sweden,	1260-1273.	

Simon,	Beth	Cook,	Angela	Carbone,	Chris	Johnson,	Chris	Lawrence,	Mario	Minichiello,	Judy	Sheard	
(2014).	How	well	do	academic	integrity	policies	and	procedures	apply	to	non-text	
assessments?	Sixth	International	Integrity	and	Plagiarism	Conference	(6IIPC),	Gateshead,	UK.	

Simon,	Beth	Cook,	Judy	Sheard,	Angela	Carbone,	Chris	Johnson	(2014).	Student	perceptions	of	the	
acceptability	of	various	code-writing	practices.	19th	ACM	Conference	on	Innovation	and	
Technology	in	Computer	Science	Education	(ITiCSE	’14),	Uppsala,	Sweden,	105-110.	

Simon,	Beth	Cook,	Judy	Sheard,	Angela	Carbone,	Chris	Johnson	(2014).	Academic	integrity	
perceptions	regarding	computing	assessments	and	essays.	Tenth	International	Computing	
Education	Research	Conference	(ICER	2014),	Glasgow,	Scotland,	107-114.	

	10	

Simon,	Judy	Sheard	(2015).	Academic	integrity	and	professional	integrity	in	computing	education.	
20th	ACM	Conference	on	Innovation	and	Technology	in	Computer	Science	Education	(ITiCSE	’15),	
Vilnius,	Lithuania,	237-241.	

Simon	(2015).	Academic	integrity:	it’s	not	what	they	would	have	us	believe.	Keynote	presentation	
at	Sixth	Annual	CITRENZ	Conference,	Queenstown,	New	Zealand.	

Simon,	 Judy	 Sheard	 (2015).	 In	 their	 own	 words:	 students	 and	 academics	 write	 about	 academic	
integrity.	15th	 International	Conference	on	Computing	Education	Research	–	Koli	Calling	2015,	
Koli,	Finland,	97-106.	

Simon,	Judy	Sheard	(2016).	Computing	assessments	and	academic	integrity.	18th	Australasian	
Computing	Education	Conference	(ACE	2016),	Canberra,	Australia,	February	2016,	article	3.	

Simon	(2016).	Academic	integrity	in	non-text	based	disciplines.	Handbook	of	Academic	Integrity,	
763-782	(Springer,	Singapore).	

Simon,	Beth	Cook,	Judy	Sheard,	Chris	Johnson,	Angela	Carbone,	Chris	Lawrence,	Mario	Minichiello	
(2016).	Plagiarism	and	related	issues	in	assessments	not	involving	text.	OLT	final	report,	2016.	
http://www.olt.gov.au/project-plagiarism-and-related-issues-assessments-not-involving-text-
2012		

	

	 	

	11	

Research	Type:	Design	and	Development	Research	
		

Research	Title:	Data-driven	Support	for	Novice	Programmers	

		

Authors:	Thomas	W.	Price,	Tiffany	Barnes	

		

Contact	Information:	twprice@ncsu.edu;	tmbarnes@ncsu.edu	

		

Purpose	
The	goal	of	this	project	is	to	create	and	evaluate	algorithms	for	generating	data-driven	hints	and	
feedback	for	novice	programmers	working	on	open-ended	assignments.	Our	research	will	result	in	
an	augmented	novice	programming	environment	that	provides	automated,	customized	feedback	to	
students	on	their	current	program	when	they	are	stuck	and	unable	to	proceed	on	their	own.	This	
should	allow	students	to	continue	working,	even	in	the	absence	of	an	instructor	or	TA.	We	will	
evaluate	our	success	by	measuring	the	impact	of	our	hints	on	novice	students'	performance	and	
learning	in	an	introductory	CS	setting.	

	

Justification	
CS	instruction	is	arguably	more	effective	now	than	ever,	with	new	curricula	that	engage	students'	
creativity	and	interests	and	programming	environments	that	make	CS	more	accessible	through	
block-based	editors	[6].	However,	even	when	we	engage	students	and	lessen	the	burden	of	syntax,	
programming	remains	a	difficult	subject	to	learn.		When	students	struggle	or	get	stuck,	the	burden	
falls	almost	entirely	on	instructors,	who	are	not	always	available.		

Intelligent	Tutoring	Systems	(ITS)	are	adaptive	learning	tools	that	attempt	to	fill	this	gap	by	playing	
the	role	of	a	tutor,	guiding	a	student's	learning.	ITSs	offer	support	during	problem	solving,	often	
with	adaptive	hints	and	feedback.	Like	many	tutor	interventions,	these	hints	can	be	seen	as	
scaffolding	to	keep	the	student	in	the	Zone	of	Proximal	Development	[3].	Empirically,	this	approach	
has	been	shown	to	improve	student	performance	both	inside	the	tutor	and	on	subsequent	
assessments	[5].		

Our	work	attempts	to	make	these	ITS-style	hints	available	in	existing,	effective	novice	programming	
environments	and	curricula.	Our	data-driven	algorithms	automate	the	process	of	hint	generation,	
lowering	the	barrier	to	use.	We	aim	to	improve	on	the	state	of	the	art	in	hint	generation	by	
designing	an	algorithm	specifically	for	the	open-ended	programming	assignments	used	in	many	
introductory	courses,	which	pose	difficulties	for	existing	techniques	[2].	

	

	12	

Research	Plan	
Our	methods	for	achieving	our	research	goals	are	as	follows:		

1) Instrument	a	programming	environment	(Snap!)	and	collect	data	from	novices	in	a	class	
setting	as	they	work	on	introductory	assignments.	[Complete]	

2) Design	and	iteratively	refine	an	algorithm	which	adapts	existing	techniques	for	data-driven	
hint	generation	to	the	context	of	open-ended	programming	assignments.	[Complete]	

3) Perform	a	technical	evaluation	of	the	algorithm	to	determine	the	feasibility	of	our	approach	
using	historical	data	to	generate	and	test	hints.	[Complete]	

4) Run	a	small	pilot	study	in	a	CS	classroom	and	collect	qualitative	data	on	how	students	
interact	with	available	hints	on	a	single	assignment.	[Complete]	

5) Revise	the	algorithm	to	address	the	problems	observed	in	Step	4.		
6) Run	a	larger	pilot	study	over	a	semester	in	a	CS	class,	and	compare	student	outcomes	to	

historical	data	collected	in	Step	1.	

The	population	we	are	studying	is	an	introductory	CS	course	for	non-majors,	consisting	of	60-80	
students	per	semester.	In	Step	6,	our	measures	will	be	students'	performance	on	assignments	with	
hints	available,	their	performance	on	a	subsequent	assignment	without	hints	available	and	their	
performance	on	in-class	assessments.	

		

Findings	
Our	research	so	far	has	yielded	three	primary	findings:	

Existing	hint-generation	techniques	are	not	well	suited	for	open-ended	programming	assignments	[2].	
The	data	collected	during	the	fall	and	spring	semesters	suggests	that	there	is	very	little	exact	
overlap	among	student	solution,	making	it	very	difficult	to	apply	traditional	data-driven	techniques.	
Additionally,	open-ended	assignments	often	have	objectives	that	involve	user	interaction	or	visual	
output,	making	them	difficult	to	asses	automatically,	which	many	existing	techniques	rely	upon.	

Despite	these	challenges,	we	can	reliably	generate	data-driven	hints	[1].	A	technical	evaluation	of	the	
CTD	algorithm	shows	that	even	on	an	open-ended	assignment	with	almost	no	direct	student	
overlap,	the	algorithm	is	still	able	to	reliably	generate	hints	which	lead	a	student	to	a	complete	or	
nearly-complete	solution.	

These	hints	have	potential	to	provide	great	benefit,	but	there	are	many	challenges	to	successful	
implementation.	Qualitative	analysis	of	the	pilot	study	reveals	that	the	hints	perform	ideally	for	
some	students,	but	many	use	them	rarely	or	not	at	all.	Some	of	the	generated	hints	were	technically	
correct	but	still	confusing	to	students.	Other	hints	were	quite	reasonable	but	still	ignored,	
indicating	the	need	for	further	refinement	of	the	algorithm	and	further	study	of	what	makes	a	good	
hint.	

	

	

	13	

Publications	and	Links	to	Relevant	Webpages	

Demo	page:	http://go.ncsu.edu/isnap		

Publications:	

[1]	T.	W.	Price,	Y.	Dong,	and	T.	Barnes,	“Generating	Data-driven	Hints	for	Open-ended	
Programming,”	in	Proceedings	of	the	International	Conference	on	Educational	Data	Mining,	
2016.	

[2]	T.	W.	Price	and	T.	Barnes,	“An	Exploration	of	Data-Driven	Hint	Generation	in	an	Open-Ended	
Programming	Problem,”	in	Proceedings	of	the	Workshop	on	Graph-Based	Data	Mining	held	at	
EDM’15,	2015.	

	

Other	References:	
[3]	T.	Murray	and	I.	Arroyo,	“Toward	Measuring	and	Maintaining	the	Zone	of	Proximal	

Development	in	Adaptive	Instructional	Systems,”	in	International	Conference	on	Intelligent	
Tutoring	Systems,	2002.	

[4]	D.	Garcia,	B.	Harvey,	and	T.	Barnes,	“The	Beauty	and	Joy	of	Computing,”	ACM	Inroads,	vol.	6,	no.	
4,	pp.	71–79,	2015.	

[5]	A.	Corbett	and	J.	Anderson,	“Locus	of	Feedback	Control	in	Computer-Based	Tutoring:	Impact	on	
Learning	Rate,	Achievement	and	Attitudes,”	in	Proceedings	of	the	SIGCHI	Conference	on	
Human	Computer	Interaction,	2001,	pp.	245–252.	

[6]	T.	W.	Price	and	T.	Barnes,	“An	Exploration	of	Data-Driven	Hint	Generation	in	an	Open-Ended	
Programming	Problem,”	in	Proceedings	of	the	Workshop	on	Graph-Based	Data	Mining	held	at	
EDM’15,	2015.	

	

	 	

	14	

Research	Type:	Early-Stage	or	Exploratory	Research		
	

Research	Title:	Automated	Tutor	for	Pinpointing	Code	Reasoning	Obstacles	and	Improving	
Student	Understanding	

	

Authors:	Michelle	Cook1,	Jason	O.	Hallstrom2,	Joseph	E.	Hollingsworth3,	Matthew	Pfiste4,	and	
Murali	Sitaraman4		

	

1	College	of	Education,	Clemson	University,	Clemson,	SC	29634	

2	Computer	and	Electrical	Engineering,	and	Computer	Science,	Florida	Atlantic	University,	Boca	
Raton,	FL	33431	

3	Computer	Science,	Indiana	University	Southeast,	New	Albany,	IN	47150	

4	School	of	Computing,	Clemson	University,	Clemson,	SC	29634	

	

Contact	Information:	murali@clemson.edu	

		

Purpose	
The	project	goals	are	to	pinpoint	fine-grain	obstacles	that	students	face	in	reasoning	correctly	about	
code	 compositions	and	 to	help	 improve	 their	 code	understanding	 through	 tailored	activities.	The	
approach	 involves	 the	use	of	a	 logical	 reasoning	 tutor,	aided	by	an	automated	verification	engine	
that	checks	code	correctness.	The	verification	engine	makes	it	possible	for	the	tutor	to	offer	a	class	
of	 learner	 activities	 and	 directed	 logical	 feedback	 not	 possible	 with	 standard	 development	
environments,	 such	 as	 Eclipse.	 The	 project	 aims	 to	 address	 both	 beginning-level	 programming	
constructs	and	compositions,	such	as	assignment	and	if-then-else	statements,	and	more	advanced	
software	engineering	concepts,	such	as	component	contracts	and	invariants.		

	

Justification	
The	significance	of	 the	project	 is	 that	 it	will	enhance	the	 logical	reasoning	ability	of	students,	and	
thus	 improve	 the	 quality	 of	 the	 software	 they	 develop	 and	 maintain	 after	 graduation.	 We	 have	
previously	shown	that	undergraduate	students	can	learn	to	reason	formally	about	code	correctness	
[Drachova	 2015].	 Traditional	 reasoning	methods	 include	 having	 students	 run	 their	 programs	 on	
select	 inputs,	 and	 then	 study	 the	 outputs	 to	 determine	 program	 behavior,	 both	 wanted	 and	
unwanted.	This	approach	often	gives	students	a	 limited	understanding	of	a	program’s	behavior—
i.e.,	 only	what	 it	 does	 on	 selected	 inputs.	We	 seek	 to	 enhance	 this	 approach	 by	 helping	 students	
reason	analytically	about	program	behavior	over	all	inputs,	including	untested	inputs.	Furthermore,	

	15	

traditional	 teaching	 methods	 require	 enormous	 assessment	 effort	 on	 the	 part	 of	 instructors	 to	
pinpoint	 a	 student’s	 reasoning	 obstacles	 and	 provide	 specific	 feedback.	 Through	 automation,	 the	
logical	 reasoning	 tutor	 aims	 to	 overcome	 these	 challenges	 and	 improve	 code	 reasoning	 for	
individuals	 and	 groups.	 A	 precursor	 to	 the	 logical	 reasoning	 tutor	 is	 a	 web	 environment	 for	
developing	and	reasoning	about	code	[Cook	2013].		

	

Research	Plan	
While	the	research	plan	for	the	project	considers	questions	of	engagement	and	impact	on	different	
subsets	of	populations,	 in	 this	description	we	 focus	on	 the	 following	research	questions:	Does	 the	
logical	 reasoning	 tutor	help	pinpoint	 individual	 and	collective	 fine-grain	 reasoning	obstacles,	 and	
can	 it	 enhance	 student	 understanding?	 By	 fine-grain,	 we	 mean	 going	 beyond	 traditional	
identification	of	broader	themes,	such	as	difficulties	with	understanding	assertions,	method	calls,	or	
loops,	 and	 detecting	 if	 students	 understand	 composition	 of	 self-referential	 assignments	 and	
changes	 in	 values	 of	 variables,	 for	 example.	 The	 research	 design	 involves	 hypothesizing	potential	
reasoning	 obstacles	 and	 devising	 activities	 that	 help	 to	 make	 fine-grain	 obstacles	 explicit	 to	
instructors.	 When	 a	 student-supplied	 answer	 is	 incorrect,	 the	 logical	 reasoning	 tutor	 is	
automatically	 capable	 of	 pinning	 down	 the	 reason	 for	 the	 incorrect	 answer	 by	 introducing	
subsequent	student	activities,	each	of	which	explores	subordinate	reasoning	obstacles.	The	logical	
reasoning	 tutor	 will	 collect	 data	 on	 individual	 and	 group	 obstacles	 to	 facilitate	 individual	 and	
collective	help.		

	

The	research	will	be	conducted	 in	the	context	of	 introductory	and	software	development	courses,	
where	 student	 reasoning	 obstacles	 will	 span	 beginning-level	 programming	 constructs	 and	
compositions,	 such	 as	 assignments	 and	 if-then-else	 statements,	 and	 more	 advanced	 software	
engineering	 concepts,	 such	 as	objects;	 the	 latter	 includes	both	 interface	 contracts	 and	 invariants.	
The	collected	data	might	 inform	us	of	 fundamental	 fine-grain	obstacles	 that	have	been	difficult	 to	
pin	down	in	common	compositions	and	potential	new	obstacles	in	the	more	advanced	object-based	
reasoning	 context.	 The	 tool	will	 be	 instrumented	 to	 achieve	 fine-grain	data	 collection	on	 student	
inputs	and	verification	outcomes.		

	

To	 validate	 the	 thesis	 that	 the	 logical	 reasoning	 tutor,	 supported	 by	 a	 verification	 engine,	 can	
pinpoint	 	 fine-grain	 learning	 obstacles,	 we	will	 gather	 data	 and	 analyze.	 For	 example,	 fine-grain	
data	 collected	 by	 the	 tool	 from	 a	 contract	 programming	 exercise	 might	 include	 the	 fact	 that	 an	
operation’s	implementation	failed	to	satisfy	the	precondition	of	a	called	operation.	In	this	example,	
the	obstacle	faced	by	the	student	might	be	one	of	several:	the	student	fails	to	understand	the	basis	
for	 contract	 programming,	 fails	 to	 understand	 details	 of	 the	 mathematics	 used	 in	 the	 formal	
specification,	fails	to	understand	details	about	the	calling	operation’s	contracts,	or	something	else.	
Unlike	 a	 classroom	 exercise	 where	 it	 might	 be	 hard	 to	 tease	 out	 a	 specific	 obstacle	 to	
understanding,	it	would	be	possible	to	pinpoint	the	obstacle	with	the	logical	reasoning	tutor	when	
it	automatically	provides	subsequent	exercises	based	on	these	other	aspects	of	understanding.	To	
ensure	the	reliability	of	the	data,	the	tool	will	be	employed	in	multiple	courses	at	our	institution	as	
well	as	four	others	that	have	consented	to	experiment.		

	16	

	

The	 logical	 reasoning	 tutor	will	 be	 automated	 and	will	 support	 instructor-extensible	 exercises	 to	
train	learners	to	overcome	their	obstacles	to	understanding.	The	intervention	provided	by	the	tool	
is	 assistance	 to	 a	 learner	 that	 is	 tailored	 specifically	 to	 the	 obstacles	 detected	 by	 the	 tool	 on	
previous	exercises.	Improvements	in	reasoning	with	and	without	the	help	of	the	logical	reasoning	
tutor	will	be	compared	and	analyzed.	Data	analysis	will	be	integrated	into	the	tool.	Reporting	will	
include	 both	 the	 ability	 of	 the	 tool	 to	 help	 pinpoint	 obstacles	 for	 different	 kinds	 of	 reasoning	
activities,	 and	 its	 ability	 to	 offer	 effective	 feedback	 and	 improve	 student	 understanding	 for	
individuals	and	groups.	

	

Findings	
The	project	has	just	begun	and	there	are	no	findings	at	this	time.	

	

Acknowledgments	

	

This	research	is	funded	in	part	by	US	National	Science	Foundation	grant	EHR-
1611714.	

	

Publications	and	Links	to	Relevant	Webpages	
		

Charles	T.	Cook,	Heather	K.	Harton,	Hampton	Smith,	and	Murali	Sitaraman,	“Specification	Engineering	
and	 Modular	 Verification	 Using	 a	 Web-Integrated	 Verifying	 Compiler,”	 Proc.	 34th	 International	
Conference	on	Software	Engineering,	IEEE/ACM,	2012,	1379-1382.	

	

Svetlana	V.	Drachova,	 Jason	O.	Hallstrom,	 Joseph	E.	Hollingsworth,	 Joan	Krone,	Rich	Pak,	and	Murali	
Sitaraman.	 2015.	 Teaching	 Mathematical	 Reasoning	 Principles	 for	 Software	 Correctness	 and	 Its	
Assessment.	 Trans.	 Comput.	 Educ.	 15,	 3,	 Article	 15	 (August	 2015),	 22	 pages.	 DOI=10.1145/2716316	
http://doi.acm.org/10.1145/2716316	

	

RESOLVE	Software	Research	and	Education	Site:	www.cs.clemson.edu/group/resolve/	

	

	 	

	17	

Research	Type:	Effectiveness	Study	
	

Research	Title:	IUSE:	Design,	Development,	and	Implementation	Projects:	
Computational	Creativity	To	Improve	CS	Education	for	CS	and	non-CS	Undergraduates		
	
Authors:	Duane	F.	Shell,	PhD,	Leen-Kiat	Soh	PhD,	Elizabeth	Ingraham,	PhD,	Brian	Moore,	PhD,	
Stephen	Ramsey,	PhD	
	
Contact	Information:	dshell2@unl.edu;	lksoh@cse.unl.edu	

	

Purpose				
Our	long-term	vision	is	to	address	the	growing	need	for	computationally	savvy,	creative	thinkers	
and	problem	solvers	by	incorporating	computational	thinking	and	creative	thinking	into	the	
undergraduate	Computer	Science	and	STEM	curriculum.	This	vision	includes	STEM	fields	but	also	
extends	more	broadly	to	the	social	sciences,	arts,	music,	humanities,	and	vocational/technical	
training.		The	purpose	of	our	IUSE	project	is	to	build	on	the	innovation	from	a	previous	TUES	Grant	
(DUE-1122956)	“Integrating	Computational	and	Creative	Thinking	(IC2Think)”	to	expand	the	
dissemination	and	implementation	of	the	Computational	Creativity	Exercises	and	gain	more	
complete,	nuanced	understanding	of	the	factors	influencing	implementation	efficacy.			

	
Justification				
The	“Rebuilding	the	Mosaic”	(National	Science	Foundation	2011)	report	notes	that	addressing	
emerging	issues	in	all	fields	will	require	utilization	and	management	of	large-scale	databases,	
creativity	in	devising	data-centric	solutions	to	problems,	and	application	of	computational	and	
computer	tools	and	interdisciplinary	efforts.	Computational	thinking	and	creativity	are	critical	to	
addressing	important	societal	problems	and	central	to	21st	century	skills	(National	Research	
Council	2012).		Our	computational	creativity	exercises	do	not	involve	programming	code,	but	
instead	provide	opportunities	to	creatively	solve	problems	and	do	tasks	seemingly	unrelated	to	CS	
but	requiring	a	CS	principle	for	solution.	They	are	designed	to	foster	development	of	creative	
competencies	[2,3,6],	by	engaging	multiple	senses,	requiring	imaginative	thought,	presenting	
challenging	problems	and	combining	both	individual	and	group	efforts.	
In	previous	studies	during	IC2Think,	we	identified	increased	learning	related	to	completing	
incrementally	more	CCEs	[2,3]	and	found	increased	learning	in	a	quasi-experimental	trial	for	an	
introductory	CS	class	for	engineering	majors	[6].		These	findings	form	the	foundation	for	the	
extensions	of	CCE	deployment	and	research	proposed	in	this	project.	We	want	to	find	out	whether	
similar	effects	will	remain	when	the	exercises	are	scaled	including	implementation	in	a	broader	
range	of	lower-	and	upper-division	CS	and	non-CS	courses	with	CCEs	incorporated	as	regular	
assignments	within	the	course	to	provide	a	test	in	as	close	as	possible	to	normal	classroom	
conditions.	

	
	

	18	

Research	Plan				
The	overall	study	aim	is	to	produce	a	final	suite	of	validated,	dissemination	ready	CCEs.		We	are	
using	design-based	research	methodology	[9]	integrating	classroom	intervention	and	testing	in	an	
iterative	cycle	with	feedback	of	results	to	improve	and	refine	the	CCEs.		Research	objectives	are	to	
determine	if	CCE	have	similar	effectiveness	in	lower-	and	upper-division	CS	courses	and	in	CS	and	
non-CS	courses,	how	different	student	characteristics	(demographics,	motivation,	self-regulation,	
ability)	may	impact	CCE	completion	and	effectiveness,	and	why	CCEs	are	producing	their	effects	on	
learning.		Table	1	shows	the	measures	used.		In	terms	of	the	research	design	methods	and	
procedures,	motivation	and	strategic	self-regulation/engagement	measures,	creative	competencies,	
self-efficacy,	and	the	knowledge	test	are	collected	on	a	web	survey.		Goal	Orientation,	FTPS	
connectedness,	Perceived	Instrumentality,	Mindsets,	and	self-efficacy	are	assessed	pre,	mid,	and	
post	course.	Affect	and	strategic	self-regulated	engagement	are	assessed	mid	and	post	course.		
Creative	competencies	are	assessed	pre	and	post	course.	The	knowledge	test	is	collected	post-
course.		Table	2	shows	some	statistics	on	the	data	collected.		The	basic	research	design	for	testing	
CCE	effectiveness	is	to	compare	student	outcomes	from	classes	during	the	implementation	
semester	to	the	same	class(es)	in	the	control	semester.		This	design	was	augmented	with	
Propensity	Score	Matching	to	pair	a	student	sample	completing	CCEs	with	a	matched	control	
semester	group	using	motivation,	self-regulation,	and	GPA.		Sub-analyses	compare	lower	division	
(freshmen	and	sophomore)	courses	and	upper	division	(junior	and	senior)	courses;	beginning	
(freshmen	and	sophomore)	or	advanced	students	(junior	and	senior),	CS	and	non-CS	majors.		
Additional	analyses	examine	associations	of	students’	motivation	and	strategic	self-regulated	
engagement	with	outcomes	and	CCE	completion,	including	Profile	Analysis.			

	
Table	1.		Measures	used	in	our	studies.	

	
Table	2.		Statistics	of	the	data	collected.	FR	=	Freshmen,	SO	=	Sophomore,	JR	=	Junior,	SR	=	Senior.	

	19	

Findings			
Across	two	lower	division	(freshmen,	sophomore)	and	three	upper	division	(junior,	senior)	CS	
courses	we	found	a	significant	linear	“dosage”	effect	on	standardized	course	grades	(F(4,	239)	=	3.34,	
p	=	.011,	partial	Eta2	=	.053;	linear	trend	p	=	.005)	and	knowledge	test	scores	(F(4,	153)	=	2.49,	p	=	
.045,	partial	Eta2	=	.061;	;	linear	trend	p	=	.012)	for	completion	of	more	CCEs.		The	increases	were	not	
trivial.		Students	improved	about	a	grade	point	for	each	addition	CCE	completed	(C+	to	B-	to	B	to	B+	
to	A	from	0	to	4	completed	CCEs).		Students	improved	on	the	knowledge	test	by	about	one	point	for	
each	additional	CCE	completed	with	those	completing	four	CCEs	scoring	50%	higher	than	those	not	
doing	a	CCE.		There	was	a	similar	linear	“dosage”	effects	in	both	lower	division	and	upper	division	
courses.		In	a	second	analysis	examining	those	students	who	did	two	or	more	CCE's,	we	used	
Propensity	Score	Matching	based	on	student	GPA	and	the	motivation	and	strategic	self-regulated	
engagement	measures	collected	in	the	pre	and	post	surveys	to	identify	a	matched	control	group	
from	the	students	in	the	same	courses	from	the	Fall	2014	and	Spring	2015	control	
semesters.		Students	completing	the	CCEs	in	the	implementation	semester	had	higher	z-score	
standardized	class	grades	(Implement	M	=	.42;	Control	M	=	0.01,	t	=	-3.78,	p	<	.01,	Cohen’s	d=	.77),	
higher	knowledge	test	scores	(Implement	M	=	7.84;	Control	M	=	6.68,	t	=	-2.34,	p	=	.02,	Cohen’s	d=	
.35),	and	higher	self-efficacy	(Implement	M	=	70.88;	Control	M	=	63.11,	t	=	-2.65,	p	=	.01,	Cohen’s	d=	
.39).		There	was	no	difference,	however,	in	creative	competency	scores	(t	=	.28,	p	=	.78,	Cohen’s	d	=	-
.05).		These	effects	were	the	same	in	both	lower-	and	upper-division	courses.	Other	studies	have	
found	associations	between	initial	motivation	and	change	across	the	semester	in	students’	
perceived	instrumentality,	and	career	aspirations	and	grades	and	knowledge	test	scores	[5,	8].	

	
References,	Publications,	and	Links	to	Relevant	Webpages	
[1]		 Epstein,	R.,	Schmidt,	S.,	Warfel,	R.	2008.	Measuring	and	Training	Creativity	Competencies:	

Validation	of	a	New	Test.	Creativity	Research	Journal,	20:7-12.	
*[2]	 Miller,	L.D.,	Soh,	L.-K.,	Chiriacescu,	V.,	Ingraham,	E.,	Shell,	D.	F.,	and	Hazley,	M.	P.	2013.	

Improving	Learning	of	Computational	Thinking	using	Creative	Thinking	Exercises	in	CS-1	
Computer	Science	Courses.	In	Proc.	FIE	(Oklahoma	City,	OK,	October	23-26),	pp.	1426-1432.	

*[3]	 Miller,	L.D.,	Soh,	L.K.,	Chiriacescu,	V.,	Ingraham,	E.,	Shell,	D.F.,	and	Hazley,	M.P.	2014.	
Integrating	computational	and	creative	thinking	to	improve	learning	and	performance	in	CS1.	
In	Proc.	SIGCSE	(Atlanta,	GA,	March	5-8),	pp.	475-480.	

*[4]	 Nelson,	K.G.,	Shell,	D.F.,	Husman,	J.,	Fishman,	E.J.,	and	Soh,	L.K.	2015.	Motivational	and	self-
regulated	learning	profiles	of	students	taking	a	foundational	engineering	course.	J	Eng	Educ.,	
104,	74-100.	DOI=	10.1002/jee.20066		

*[5]	 Peteranetz,	M.	S.,	Flanigan,	A.	E.,	Shell,	D.	F.,	and	Soh,	L.-K.	(in	press).		Perceived	
instrumentality	and	career	aspirations	in	CS1	courses:	Change	and	relationships	with	
achievement.		In	Proc.	ICER	(Melbourne,	VC,	Australia,	September	9-11).	

*[6]	 Shell,	D.	F.,	Hazley,	M.	P.,	Soh,	L.-K.,	Miller,	L.	D.,	Chiriacescu,	V.	and	Ingraham,	E.	2014.	
Improving	learning	of	computational	thinking	using	computational	creativity	exercises	in	a	
college	CS1	computer	science	course	for	engineers.	In		Proc.	FIE	(Madrid,	Spain,	October	22-
25,	2014),	pp.	3029-3036.	

*[7]	 Shell,	D.F.	and	Soh,	L.K.	2013.	Profiles	of	motivated	self-regulation	in	college	computer	science	
courses:	Differences	in	major	versus	required	non-major	courses.	J.	of	Sci.	Ed.	and	Tech.,	22	
(Feb.	2013),	899-913.	DOI=	10.1007/s10956-013-9437-9	

	20	

*[8]	 Shell,	D.	F.,	Soh,	L.-K.,	Flanigan,	A.	E.,	and	Peteranetz,	M.	S.	2016.	Students'	initial	course	
motivation	and	their	achievement	and	retention	in	college	CS1	courses.	In	Proc.	SIGCSE	
(Memphis,	TN,	March	2-5),	639-644).	

[9]	 Wang,	F.	and	M.	J.	Hannafin	(2005).	Design-Based	Research	and	Technology-Enhanced	
Learning	Environments.	Educational	Technology	Research	and	Development,	53(4):5-23.		

*Project	Publications	
	

Project	Web	Site	
http://cse.unl.edu/agents/ic2think/	
	
	
	

	

				

	

	 	

	21	

Research	Type:	Design	and	Development	Research			
		
Research	Title:	Gidget	–	A	game	for	computing	education		
		
Authors:	Michael	J.	Lee,	PhD		
		
Contact	Information:	mjlee@njit.edu		
			

Purpose		

Gidget1	is	a	freely	available	online	educational	game	designed	to	teach	users	introductory	computer	
programming	(CS1)	concepts	[5].	Players	must	help	the	eponymous	protagonist	of	the	game—a	
damaged	robot—solve	debugging	puzzles	(i.e.,	fix	broken	code)	to	complete	its	missions.	Each	
mission	(i.e.,	level)	has	a	specific	learning	objective,	with	the	entire	collection	of	game	levels	
comprising	a	simple	CS1	curriculum	[10].	We	envision	Gidget	as	a	low-barrier,	entertaining	medium	
for	novices	to	gain	exposure	and	experience	with	computer	programming.	Moreover,	our	goal	is	to	
keep	users	engaged	with	the	game	[9,	8,	10],	and	for	them	to	show	measurable	learning	outcomes	
[7].		

	

Justification		

The	web	is	dramatically	changing	how,	where,	and	with	whom	people	learn.	The	largest	and	most	
accessible	repositories	for	learning	are	no	longer	schools	and	libraries,	but	websites	such	as	
Wikipedia,	Udacity,	and	Coursera2.	These	new	types	of	discretionary	learning	environments	allow	
learners	to	work	at	their	own	pace	[20],	engage	with	the	material,	and	socialize	with	others	–	all	at	a	
scale	that	is	typically	unavailable	in	more	compulsory	learning	settings.	However,	these	online	
systems	are	relatively	new	pedagogical	tools,	and	more	research	needs	to	be	done	to	learn	how	to	
use	them	most	effectively.			

		
Educational	games	are	a	medium	within	the	online	learning	space	with	large	potential.	Gaming	can	
be	used	to	provide	a	low-pressure,	non-threatening,	and	engaging	medium	to	learn	new	skills	such	
as	programming	[15].	Games	are	now	widely	thought	of	as	effective	instructional	tools	[13,	16,	18]	
because	they	can	share	the	attributes	of	a	good	teacher:	they	provide	immediate	feedback	of	
success	of	failures,	assist	in	learning	at	different	rates,	and	offer	opportunities	to	practice	[14].	In	
addition,	games	can	attract	a	wide	and	diverse	audience.	While	traditionally	viewed	as	a	hobby	for	
young	boys	[11],	games	are	now	a	universal	form	of	play,	with	42%	of	females	of	all	ages	playing	
games	[12,	19].	The	average	gamer	is	37	years	old,	approximately	95%	of	US	children	ages	2-17	
play	video	games	[12,	19,	17],	and	the	number	of	55+	year	old	gamers	is	continuing	to	rise	[19,	17].		

																																																													
1 www.helpgidget.org
2 www.wikipedia.org, www.udacity.com, www.coursera.org

	22	

		
Unfortunately,	little	is	known	about	how	to	effectively	engage	and	teach	novices	a	CS1	curriculum	at	
scale	using	online	educational	games.	Moreover,	we	do	not	know	much	about	who	are	playing	these	
games,	how	successful	they	are,	or	how	often	they	return.	With	the	importance	of	computing	
education	in	the	21st	century,	along	with	the	the	rising	number	of	internet	users	and	increasing	
popularity	of	online	learning	resources,	it	is	essential	to	research,	develop,	and	test	new	ways	to	
engage	and	teach	effectively	at	scale.			

	

Research	Plan		

We	developed	Gidget	to	be	accessible	and	appealing	to	a	wide	range	of	users;	this	included	using	a	
gender-inclusive	design	approach	[1,	6].	In	addition	to	user-provided	demographic	information,	
Gidget	also	automatically	collects	all	user	code	edits,	interface	interactions,	and	time	logs.	To	date,	
Gidget’s	users	are	between	6	years	old	(with	help	from	an	adult)	and	75	years	old,	with	46%	of	the	
registered	users	being	female	[5].	Players	are	predominately	from	the	USA	and	Russia,	followed	by	
the	U.K.	and	Canada.			

		
Gidget	was	developed	using	an	iterative	development	process,	with	each	major	release	designed	to	
answer	a	specific	research	question.	Many	of	these	releases	featured	a	controlled	experimental	
design,	where	users	will	split	into	different	groups	to	test	hypotheses	about	user	engagement	
and/or	learning	outcomes.	Data	was	collected	in	the	form	of	pre	and	post	tests	of	knowledge,	pre	
and	post	questionnaires,	and	automated	logging.	In	addition	to	running	controlled	experiments	
with	hundreds	of	online	users,	we	ran	studies	in	the	form	of	multiple	summer	camps	for	teenagers.		

	

Findings		

We	have	published	on	several	of	our	key	findings	throughout	our	iterative	design	process	while	
developing	Gidget.	Our	studies	have	found	that	learners	stay	engaged	with	the	game	when:	1)	a	
personified	computer	character	conveys	error	messages	[9];	2)	game	goals	are	purposeful	[8];	and	
3)	there	are	in-game	assessments	[10].	In	addition,	our	studies	have	shown	that	leaners	show	
measurable	learning	gains	after	playing	through	the	game	[7].	Moreover,	Gidget	is	appealing	to	a	
wide	audience—including	teenagers	from	urban	and	rural	populations	[4,	6]—and	can	improve	
adults’	initially	negative	views	towards	computer	programming	[2].		

		
Since	its	public	release,	Gidget	has	attracted	thousands	of	people	from	all	over	the	world.	It	has	
been	used	successfully	in	many	summer	camps	for	high	school	and	college	students	(especially	
focused	on	increasing	females’	participation	in	STEM),	and	there	are	plans	to	implement	the	entire	
game	into	semester-long,	college	introductory	programming	courses.	Educators	interested	in	using	
the	game	for	their	own	classroom,	enrichment	program,	and/or	personal	use	are	encouraged	to	do	

	23	

so,	and	to	contact	the	author	for	additional	support.	Researchers	interested	in	using	Gidget’s	log	
data	for	analyses	are	encouraged	to	contact	the	author	for	more	information.		

		

Publications	and	Links	to	Relevant	Webpages		
1. Burnett,	M.,	Churchill,	E.,	Lee,	M.J.	(2015).	SIG:	Gender-Inclusive	Software:	What	We	Know	About	

Building	It.	ACM	CHI	Extended	Abstracts,	857-860.		
2. Charters,	P.,	Lee,	M.J.,	Ko,	A.J.,	and	Loksa,	D.	(2013).	Challenging	Stereotypes	and	Changing	

Attitudes:	The	Effect	of	a	Brief	Programming	Encounter	on	Adults'	Attitudes	Toward	
Programming.		
ACM	SIGCSE,	653-658.		

3. Gidget:	www.helpgidget.org		
4. Jernigan,	W.,	Horvath,	A.,	Lee,	M.J.,	Burnett,	M.,	Cuilty,	T.,	Kuttal,	S.K.,	Peters,	A.,	Kwan,	I.,	Bahmani,	

F.,	and	Ko,	A.J.	(2015).	A	Principled	Evaluation	for	a	Principled	Idea	Garden.	IEEE	VL/HCC,	235-
243.		

5. Lee,	M.J.	(2015).	Teaching	and	Engaging	with	Debugging	Puzzles.	University	of	Washington	
Dissertation	(UW),	Seattle,	WA.		

6. Lee,	M.J.,	Bahmani,	F.,	Kwan,	I.,	Laferte,	J.,	Charters,	P.,	Horvath,	A.,	Luor,	F.,	Cao,	J.,	Law,	C.,	
Beswetherick,	M.,	Long,	S.,	Burnett,	M.,	and	Ko,	A.J.	(2014).	Principles	of	a	Debugging-First	Puzzle	
Game	for	Computing	Education.	IEEE	VL/HCC,	57-64.			

7. Lee,	M.J.,	and	Ko,	A.J.	(2015).	Comparing	the	Effectiveness	of	Online	Learning	Approaches	on	CS1	
Learning	Outcomes.	ACM	ICER,	237-246.		

8. Lee,	M.J.,	and	Ko,	A.J.	(2012).	Investigating	the	Role	of	Purposeful	Goals	on	Novices'	Engagement	in	
a	Programming	Game.	IEEE	VL/HCC,	163-166.		

9. Lee,	M.J.	and	Ko,	A.J.	(2011).	Personifying	Programming	Tool	Feedback	Improves	Novice	
Programmers'	Learning.	ACM	ICER,	109-116.		

10. Lee,	M.J.,	Ko,	A.J.,	and	Kwan,	I.	(2013).	In-Game	Assessments	Increase	Novice	Programmers'	
Engagement	and	Level	Completion	Speed.	ACM	ICER,	153-160.		

		

	 	

	24	

References		

11. Cassell,	J.	&	Jenkins,	H.,	eds.	(1998)	From	Barbie	to	Mortal	Kombat:	Gender	and	Computer	Games.	
MIT	Press,	Cambridge,	MA.		

12. ESA	(2011).	Essential	facts	about	the	computer	and	video	game	industry.	Entertainment	Software	
Association.	http://www.theesa.com/facts/pdfs/ESA_EF_2011.pdf,	retrieved	August	21st,	2016.		

13. Gee,	J.P.	(2007).	What	video	games	have	to	teach	us	about	learning	and	literacy.	Macmillan.		
14. Gentile,	D.A.	(2009).	Video	Games	Affect	the	Brain—for	Better	and	Worse.	The	DANA	Foundation,	

Cerebrum.	July	23,	2009.		
15. Griffiths,	M.D.	(1997).	Video	games:	the	good	news.	Education	and	Health,	15:10–12.		
16. Hämäläinen,R.,	Manninen,T.,	Järvela,	S.,	&	Häkkinen,P.	(2006).	Learning	to	collaborate:	Designing	

collaboration	in	a	3-D	game	environment.	Internet	and	Higher	Education,	9(1),	47–61.		
17. Ito,	M.,	Baumer,	S.,	Bittanti,	M.,	boyd,	d.,	Cody,	R.,	Herr	B.,	Horst,	H.A.,	Lange,	P.G.,	Mahendran,	D.,	

Martinez,	K.,	Pascoe,	C.J.,	Perkel,	D.,	Robinson,	L.,	Sims,	C.,	and	Tripp,	L.	(2009).	Hanging	Out,	
Messing	Around,	Geeking	Out:	Living	and	Learning	with	New	Media.	Cambridge:	MIT	Press.		

18. McGonigal,	J.	(2011).	Reality	is	broken:	Why	games	make	us	better	and	how	they	change	the	world.	
Penguin.		

19. newzoo.com	(2011).	“High-level	Game	Facts	from	the	US	National	Gamers	Survey,”	retrieved	
August	21st,	2016.		

20. Steffe,	L.P.,	&	Gale,	J.	E.	(Eds.).	(1995).	Constructivism	in	education.	Hillsdale,	NJ:	Lawrence	
Erlbaum,	159.		

	 	

	25	

Research	Type:	Early-Stage	or	Exploratory	Research					
	
Research	Title:	Applying	Complexity	Leadership	Theory	to	the	Adoption	of	Active	Learning	
Practices	
	
Authors:	Eileen	Kraemer,	Murali	Sitaraman,	Russ	Marion,	Cazembe	Kennedy,	Gemma	Jiang	
	
Contact	Information:	{etkraem,murali,marion2,cazembk,xiaoyaj}@clemson.edu	
	
	
Purpose	
Recent	 work	 by	 researchers	 in	 computing	 education	 has	 established	 the	 use	 of	 active	 learning	
techniques	 as	 a	 pedagogical	 best	 practice,	with	 the	dual	 benefits	 of	 engaging	 students	 across	 the	
board	in	learning	and	broadening	participation	in	computing	[Borrego	2014].	However,	widespread	
adoption	 of	 active	 learning	 strategies	 by	 the	 faculty	 of	 an	 academic	 unit	 remains	 a	 stubborn	
challenge	[Olson	2012].	The	purpose	of	this	research	is	to	evaluate	the	use	of	complexity	leadership	
theory	 techniques	 to	 structure	 the	 context	 of	 an	 academic	 unit	 so	 that	 increased	 use	 of	 active	
learning	emerges.	
	
Justification	
Complexity	leadership	theory	(CLT)	is	a	theory	of	organizational	change	that	has	been	successfully	
applied	in	business	settings,	and	is	recommended	as	a	promising	approach	by	researchers	working	
in	change	strategies	for	STEM	disciplines	in	higher	education	[Uhl-Bien	2008].			CLT	is	based	on	the	
documented	 premise	 that	 synergistic	 dynamics	 of	 group	 synchrony	 (processing	 information	
interdependently	 within	 groups)	 is	 a	 more	 powerful	 stimulus	 for	 change,	 creativity,	 and	
productivity	 than	 are	 more	 traditional	 approaches	 that	 involve	 the	 development	 of	 skills	 in	
individual	agents.	CLT	strategies	foster	the	development	of	 informal	leaders	and	information	flow	
across	 a	 system,	 with	 support	 from	 a	 formal	 leader.	 In	 this	 approach,	 network	 models	 are	
constructed	that	represent	the	entities	and	interactions	in	the	unit	under	study,	and	then	analyzed	
to	produce	measures	that	capture	properties	of	the	underlying	system.		Interventions	may	then	be	
applied,	and	their	effects	evaluated	in	terms	of	the	impact	on	the	network	and	associated	measures.	
The	application	of	CLT	has	the	potential	to	promote	the	emergence	of	active	learning	strategies	in	
the	complex	system	of	an	academic	unit.	
	
Research	Plan	
The	research	question	for	this	study	is:	What	are	the	risks	and	benefits	of	employing	CLT	in	a	higher	
education	 context?	 Specifically,	we	 are	 conducting	 a	 feasibility	 study	 of	 CLT	within	 the	 School	 of	
Computing	at	Clemson	University.		We	are	preparing	to	collect	data	that	captures	collaboration	and	
interaction	 among	 the	members	 of	 the	 School,	 and	 their	 beliefs,	 attitudes,	 and	 usage	 concerning	
active	learning.		We	will	use	this	data	to	perform	network	analyses	that	produce	measures	of	social,	
advice,	trust,	task,	resource,	beliefs,	knowledge	and	location	networks	to	identify	informal	leaders	

	26	

and	information	flows.	These	analyses	will	serve	as	the	basis	for	identifying	interventions	that	will	
influence	 the	 information	 flows,	 with	 the	 goal	 of	 measuring	 and	 propagating	 the	 use	 of	 active	
learning	 approaches.		 While	 identification	 of	 the	 actual	 interventions	 will	 be	 impacted	 by	 the	
outcomes	 of	 network	 analyses,	 they	 may	 include	 dissemination	 of	 active-learning	 materials,	
creation	 and	 deployment	 of	 a	 cadre	 of	 graduate	 assistants	 trained	 in	 the	 use	 of	 active	 learning	
techniques	to	assist	 faculty	with	their	courses,	establishment	of	 learning	communities,	changes	 in	
department	bylaws	surrounding	promotion	and	tenure,	recommendations	from	a	panel	of	experts,	
and	other	interventions	that	appear	in	the	literature.	
	
A	 central	 question	 for	 the	 feasibility	 of	 CLT	 in	 this	 context	 is	 the	 extent	 to	 which	 faculty	 are	
receptive	 to	 the	concepts	and	participate	 in	relevant	activities.	To	gauge	 this,	we	will	use	various	
methods,	including	attitude	surveys,	interviews,	and	classroom	observation.	
	
In	 the	context	of	 this	work,	we	will	pilot	a	measurement	scale	 that	evaluates	 the	degree	of	active	
learning	 in	 classrooms.	 We	 intend	 to	 evaluate	 what	 kinds	 of	 active	 learning	 measurements	 are	
realistically	 possible	 before	 fully	 developing	 and	 validating	 the	 scale	 with	 the	 intent	 that	 it	 be	
applicable	to	computer	science	instruction	and	easily	modified	for	other	fields,	such	as	engineering	
or	 education.	 The	 scale	will	 be	 used	 in	 analytical	 studies	 of	 the	 effects	 of	 network	dynamics	 and	
network	measures	on	classroom	productivity.	
	
An	 external	 advisory	 board	 of	 experts	 in	 active	 learning	 and	 Computer	 Science	 education	 will	
provide	 feedback	and	guidance.	Additional	 feedback	will	be	generated	 in	 the	 form	of	peer	review	
and	publications	and	conference	presentations	that	result	from	the	project.	
	
Findings/Impact	
The	broader	 impacts	of	 the	proposed	project	will	be	significant.		While	 the	project	will	benefit	all	
students,	 practices	 such	 as	 active	 learning	methods	 are	particularly	beneficial	 for	 STEM	students	
from	disadvantaged	backgrounds,	students	from	underrepresented	groups,	and	female	students	in	
male-dominated	 fields.	However,	 for	 the	benefits	 to	be	reaped,	best	practices	need	 to	be	adopted	
into	 the	 culture	of	 an	organization.		 This	proposal	will	 inform	 the	basis	 for	making	 such	 changes	
happen	and	measuring	the	 impact	of	such	changes.	Ultimately,	 the	project	can	enable	diffusion	of	
best	research	practices	to	reach	all	STEM	disciplines.	
	
References		
Borrego,	M.	&	Henderson,	C.	(2014).	Increasing	the	use	of	evidence-based	teaching	in	stem	higher	

education:	A	comparison	of	eight	change	strategies.	Journal	of	Engineering	Education,	
103(2):22.	

Friedrich,	K.,	Sellers,	S.L.	&	Burstyn,	J.	(2007).	Thawing	the	chilly	climate:	Inclusive	teaching	
resources	for	science,	technology,	engineering,	and	math.	To	Improve	the	Academy:	
Resources	for	Faculty,	Instructional,	and	Organizational	Development,	26:133-144.	

	27	

Olson,	S.	&	Riordan,	D.	G.	(2012).	Engage	to	excel:	Producing	one	million		additional	college	
graduates	with	degrees	in	science,	technology,	engineering,	and	mathematics.	Report	to	the	
President.	Executive	Office	of	the	President.	

Uhl-Bien,	M.,	Marion,	R.,	&	McKelvey,	B.	(2008).	COMPLEXITY	LEADERSHIP	THEORY.	Complexity	
Leadership,	5,	185.	 	

	28	

Research	Type:	Efficacy	Study		
		

Research	Title:	Case	Studies	of	Programming	Problems		

	

Marcia	Linn,	PI:	Mike	Clancy,	co-PI	(author	of	this	document)		

	

Contact	Information:	clancy@cs.berkeley.edu		
	

Purpose		
The	purpose	of	this	NSF-supported	work	(MDR-8470514,	MDR-8954753)	was	to	design	and	
evaluate	course	material	that	we	call	case	studies,	with	the	particular	goal	of	determining	how	
working	with	case	studies	can	improve	students’	programming	design	and	development	skills.		

Each	of	our	case	studies	includes	(a)	a	statement	of	a	programming	problem;	(b)	the	commentary,	a	
narrative	description	of	an	expert’s	solution	written	so	a	student	can	understand	the	expert’s	
approach;	(c)	the	worked-out	solution	in	the	form	of	the	expert’s	code;	(d)	study	questions	to	guide	
students	in	analyzing	the	program;	and	(e)	test	questions	to	assess	students’	understanding	of	the	
program	solution.	The	narrative	emphasizes	the	decisions	encountered	by	the	programmer	and	the	
criteria	used	to	choose	among	alternatives.		

	

Justification		

Berkeley’s	computer	science	curriculum	includes	several	project	courses	that	include	large	
programming	assignments.	Many	students	floundered	with	such	assignments.	It	seemed	clear	that	
they	were	missing	design	and	development	skills	for	building	and	testing	big	programs;	this	was	
not	a	surprise,	since	there	was	little	if	any	instruction	in	this	area.	We	hoped	that	case	studies	would	
replace	unguided	discovery	as	a	mechanism	for	learning	these	skills.			

The	case	method	was	first	used	at	Harvard	College	in	1870	and	has	permeated	curricula	for	
business,	law,	and	medicine	across	the	country.	In	the	context	of	programming,	case	studies	seem	to	
have	definite	advantages.		

• They	model	efficient	ways	to	organize	programming	knowledge.		
• They	help	students	construct	techniques	and	strategies	that	reduce	or	postpone	the	

complexity	of	program	design	and	development.		
• They	guide	students	to	apply	program	design	skills	to	large,	complex	problems	and	to	learn	

context-dependent	design	strategies.		
• They	encourage	students	to	reflect	on	completed	solutions,	comparing	them	to	one	another.		

	29	

• They	stimulate	students	to	recognize	their	own	strengths	and	weaknesses	(in	order	to	
guard	against	the	latter).		

• They	make	large	programs	accessible	to	students,	and	thus	give	students	a	better	picture	of	
the	nature	of	“real	programming”.		

• They	form	the	basis	for	assessment	of	a	student’s	ability	to	design,	understand,	analyze,	
modify,	and	debug	code	that	is	both	educational	and	effective.		

• They	provide	a	vehicle	for	active	rather	than	passive	learning,	and	exploration	in	teams.		

	

Research	Plan		

We	began	by	writing	and	piloting	two	case	studies	to	use	in	subsequent	work.	One	addressed	the	
problem	of	printing	block	letters.	Another	involved	designing	and	comparing	two	versions	of	a	
program	to	print	a	calendar.	Our	next	steps	are	drawn	from	[1]	and	[2]	and	are	summarized	below.		

We	recruited	instructors	from	San	Francisco	Bay	Area	high	schools.	Subjects	came	from	ten	Pascal	
programming	classes	in	eight	schools.	Three	teachers	taught	introductory	Pascal,	three	teachers	
taught	Advanced	Placement	(AP)	Pascal,	and	two	instructed	at	both	levels.	The	total	sample	
consisted	of	121	students.		

Guided	by	the	high	school	teachers,	we	chose	three	instructional	settings.		

• The	condition	closest	to	teacher	preferences	was	the	"student	solution	+	expert	code"	
condition	where	students	created	their	own	solution	and	then	studied	the	Pascal	code	from	
the	expert's	solution.		

• In	the	"student	solution	+	expert	commentary	+	expert	code"	condition,	students	first	
created	their	own	solution	to	the	problem,	and	then	studied	the	expert	commentary	and	the	
Pascal	code	written	by	the	expert.		

• The	condition	least	consistent	with	teacher	preferences	was	the	"expert	commentary	+	
expert	code"	condition	where	students	did	not	create	their	own	solution	to	the	problem	but	
did	use	the	commentary	and	code.		

The	study	design	accounted	for	the	variety	in	programming	classes	by	using	a	baseline	condition	
where	students	studied	one	case	study	in	the	condition	that	was	in	the	middle	with	regard	to	
teacher	preference.	As	a	result	we	could	control	for	such	factors	as	student	backgrounds,	teaching	
style,	access	to	technology,	or	classroom	conditions.		

All	classes	used	the	two	case	studies	mentioned	above.	First,	for	the	baseline,	all	classes	completed	
the	Block	Letters	case	study	including	student	solution,	expert	commentary,	expert	code,	and	study	
questions.	Classes	were	then	randomly	assigned	to	one	of	the	three	alternative	approaches	
endorsed	by	the	teachers	for	the	Calendar	case	study:	(a)	student	solution	+	expert	commentary	+	
expert	code,	and	study	questions;	(b)	expert	commentary	+	expert	code	and	study	questions;	and	
(c)	student	solution	+	expert	code,	and	study	questions.	Comparing	conditions	with	the	expert	
commentary	(a	and	b	above)	to	those	without	the	expert	commentary	(c	above)	allowed	us	to	
assess	the	impact	of	the	commentary	on	program	design	skills.		

	30	

To	ensure	that	the	students	had	the	prerequisite	background,	teachers	administered	the	case	
studies	as	soon	as	they	had	covered	all	the	Pascal	constructs	used	in	the	program.	Thus,	classes	
encountered	each	case	study	after	varying	amounts	of	classroom	instruction.	All	classes	completed	
the	case	studies	by	early	spring.	Teachers	were	free	to	introduce	and	deliver	each	case	study	in	a	
manner	that	was	typical	and	appropriate	to	them.	Students	could	work	together	or	individually	
while	studying	the	commentary,	running	the	program,	or	answering	the	study	questions.	Case	
study	tests	counted	towards	class	grades.	Students	worked	on	the	test	questions	alone,	during	
regular	class	periods.		

The	case	study	tests	assessed	integrated	understanding	of	program	design	skills	but	did	not	in	any	
way	depend	on	the	expert	commentary.	Students	had	access	to	the	worked-out	solution	to	the	
problem	during	the	test.	Students	were	asked	to	engage	in	such	design	activities	as	reformulating	
the	calendar	program	to	accommodate	a	6-day	week.		

	
Findings		
Our	findings	were	summed	up	in	[2]:		

We	found	that	students	who	received	the	expert	commentary	learned	significantly	more	
about	program	design	than	did	students	who	received	the	expert	code	without	the	
commentary.	Posthoc	comparison	of	the	treatments	revealed	that	the	classes	in	both	the	
conditions	with	the	expert	commentary	significantly	outperformed	the	other	classes	on	the	
Calendar	test:	Wilcoxon	Test	(W	=	6;	n	=	3,	7)	probability	<	.03;	Analysis	of	Variance	(y	=	
7.63;	df	=	1,7;	SEy	=	2.0;	t	=	3.82)	probability	<	.05.	(For	details	of	the	statistical	analysis,	see	
[1].)		

Thus,	the	students	using	the	expert	commentary	developed	better	design	skills	than	the	
students	who	did	not	use	the	expert	commentary.	Also,	students	who	implemented	their	
own	solution	to	the	problem	and	then	studied	the	expert	commentary	learned	no	more	
about	designing	the	solution	to	a	computer	program	than	those	who	had	the	expert	
commentary	alone.	The	students	who	did	not	study	the	commentary,	i.e.,	who	implemented	
their	own	solutions	and	then	examined	the	expert	code,	were	the	least	successful	in	this	
study.	Given	that	precollege	programming	students	normally	try	to	avoid	reading,	these	
results	provide	strong	evidence	for	the	advantage	of	expert	commentary.		

These	results	indicate	that	examining	expert	code	for	a	computer	program	teaches	students	
less	about	program	design	than	does	the	expert	commentary	plus	the	code.	Students	need	
more	assistance	than	just	expert	code	in	order	to	learn	design	skills.	Even	though	the	
students	examined	the	expert	code	and	answered	study	questions	intended	to	get	them	to	
infer	the	design	process,	this	was	not	as	effective	as	reading	the	expert	commentary.		

These	results	also	indicate	that	writing	a	computer	program	is	less	helpful	than	having	expert	
commentary	for	developing	design	skills,	even	when	test	questions	require	application	of	
patterns	that	were	used	for	writing	the	program.	Neither	group	of	students	who	implemented	
their	own	solutions	to	the	Calendar	problem	had	an	advantage	over	those	who	did	not.	The	
performance	of	the	students	who	wrote	the	computer	program	is	consistent	with	the	
hypothesis	that	designing	the	solution	to	one	computer	program	does	not	impart	an	
understanding	of	the	generality	of	that	solution.	In	contrast,	examining	an	expert	solution,	

	31	

where	alternative	design	decisions	are	contrasted,	does	contribute	to	understanding	how	to	
apply	a	pattern	learned	in	the	design	of	one	program	to	a	related	program.		

	
Follow-On		
Work	in	the	late	1980’s	and	early	1990’s	involved	the	design	of	two	collections	of	Pascal-based	case	
studies	[6,	7].		

In	1990,	Berkeley’s	introductory	programming	course	was	modified	to	use	the	Lisp	language	and	to	
focus	on	functional	programming.	This	required	a	complete	reorganization	of	the	course	material	
and	online	environment.	NSF’s	Advanced	Technology	Division	funded	a	large	part	of	this	work.	It	
yielded	several	case	studies,	plus	a	system	for	working	with	case	studies	online.	The	latter	provided	
organized	access	to	the	various	parts	of	the	narrative,	several	mechanisms	for	assessment,	a	facility	
for	testing	individual	procedures,	and	a	“modeler”	that	controls	the	execution	of	the	Lisp	
interpreter	in	a	user-friendly	way.	The	system	is	described	in	[4]	and	[5].		

In	the	meantime,	the	Advanced	Placement	(AP)	CS	Test	Development	Committee	had	begun	to	
consider	how	part	of	the	AP	CS	exam	could	be	based	on	a	case	study.	(Clancy	chaired	this	
committee	from	1987	to	1992.)	One	problem	they	faced	was	that	concepts	such	as	design	and	
testing	could	not	be	tested	without	providing	a	context—impractical	in	an	online	setting.	Moreover,	
they	were	concerned	with	the	equivalence	of	the	AP	CS	exams	with	those	in	college	courses;	in	
particular,	college	data	structures	courses	generally	involved	significantly	longer	assignments	than	
their	high	school	counterparts.	After	an	ETS	pilot	study	and	the	authorship	of	two	case	studies,	the	
decision	was	made	in	1995	to	base	part	of	each	exam	on	a	case	study.	This	lasted	until	the	AP	CS	
courses	were	reorganized	in	2014.			

			

Publications		
1. “Can	Expert	Explanations	Help	Students	Develop	Program	Design	Skills?”,	Marcia	C.	Linn	

and	Michael	J.	Clancy,	International	Journal	of	Man-Machine	Studies,	volume	36,	number	4,	
pages	511-551	(1992).		

2. “The	Case	for	Case	Studies	of	Programming	Problems”,	Marcia	C.	Linn	and	Michael	J.	Clancy,	
Communications	of	the	ACM,	volume	35,	number	3,	pages	121-132	(1992).		

3. “Case	Studies	in	the	Classroom”,	Michael	J.	Clancy	and	Marcia	C.	Linn,	Proceedings	of	the	23rd	
ACM	SIGCSE	Technical	Symposium	on	Computer	Science	Education,	Kansas	City,	MO,	March,	
1992.		

4. “Knowledge	Integration	in	Introductory	Programming:	CodeProbe	and	Interactive	Case	
Studies”,	John	E.	Bell,	Marcia	C.	Linn,	and	Michael	J.	Clancy,	Interactive	Learning	
Environments,	volume	4,	number	1,	pages	75-95	(1994).		

5. “Can	Tracing	Tools	Contribute	to	Programming	Efficiency?	The	LISP	Evaluation	Modeler”,	
Lydia	M.	Mann,	Marcia	C.	Linn,	and	Michael	J.	Clancy,	Interactive	Learning	Environments,	
volume	4,	number	1,	pages	96-113	(1994).		

	32	

6. Designing	Pascal	Solutions:	A	Case	Study	Approach,	Michael	J.	Clancy	and	Marcia	C.	Linn,	W.H.	
Freeman	and	Company,	1992.		

7. Designing	Pascal	Solutions:	Case	Studies	with	Data	Structures,	Michael	J.	Clancy	and	Marcia	C.	
Linn,	W.H.	Freeman	and	Company,	1996.		

8. Instructor's	manual	to	accompany	Designing	Pascal	Solutions,	Michael	J.	Clancy	and	Marcia	
C.	Linn,	W.H.	Freeman	and	Company,	1993.		

9. The	AP	Computer	Science	Directory	Manager	Case	Study,	Michael	Clancy,	College	Entrance	
Examination	Board,	1992.		

10. A	Teacher's	Manual	for	the	Directory	Manager	Case	Study,	College	Entrance	Examination	
Board	(Advanced	Placement	Computer	Science),	1993.		

11. The	AP	Computer	Science	Marine	Biology	Case	Study,	Michael	Clancy,	Owen	Astrachan,	and	
Cary	Matsuoka,	College	Entrance	Examination	Board,	2000.		

		

		
		

		

					
	 	

	33	

Research	Type:	Effectiveness	Study	
	

Research	Title:	Effectiveness	of	Analogies	in	CS	Education	

	

Authors:	Paul	Cao,	Leo	Porter,	Dan	Zingaro	

	

Contact	Information:	yic242@eng.ucsd.edu	,	CSE	Department	at	UC-San	Diego	

	

Purpose	
The	central	research	question	of	this	study	is:	does	introducing	a	topic	with	appropriate	analogies	
improve	student	learning	of	that	topic?	

	
	Justification		
Analogies	are	considered	a	powerful	instruction	tool	for	improving	student	learning.	We	believe	a	
significant	percentage	of	instructors	have	used	analogies	when	a	new	concept	is	introduced.	
Students	usually	appreciate	this	pedagogy	when	a	connection	is	established	between	the	concept	
covered	in	class	and	another	entity	they	are	familiar	with.	However,	there	is	no	solid	evidence	that	
analogies	help	student	learning	in	computing.		Existing	research	is	scarce	and	prior	results	are	
mostly	carried	out	in	a	laboratory	environment.		

Other	CS	education	research	related	to	analogies	include	proposing	new	analogies,	analyzing	
existing	analogies	with	a	focus	on	their	soundness,	and	analogy-related	instructional	design.	
Relevant	experimental	work	in	CS	education	research	have	focused	on	analogical	encoding,	a	
concept	rooted	in	psychology.	In	analogical	encoding,	learners	compare	analogies	across	multiple	
domains,	and	try	to	capture	the	inherit	relationships	among	common	features	from	different	
domains.		

	

The	effectiveness	of	analogies	in	CS	education	are	better	measured	in	real	
classroom	settings	instead	of	laboratory	environment.	The	time	spent	on	
analogies	should	not	be	extensive	to	mirror	what	happens	in	a	normal	
class.	Faculty	member	usually	introduces	a	concept,	then	uses	one	or	more	
analogies	to	make	the	ideas	across	before	delving	deeper	into	the	content.		

	

A	better	understanding	on	whether	analogies	work	for	students	is	
beneficial	to	both	instructors	and	students.	Active	research	in	this	area	will	
generate	and	crowdsource	excellent	analogies	for	every	instructor	to	use.		
This	in	return	will	make	classes	more	enjoyable	to	students.		

	34	

Research	Plan		
We	estimated	that	if	there	is	any	effect	on	student	learning	from	analogies,	it	will	be	fairly	weak,	
and	the	benefit	of	analogies	might	vanish	quickly.	Thus	we	decided	to	have	measurements	based	on	
two	time	scales:	short	term	(days)	and	long	term	(weeks).	The	short	term	effect	has	to	be	measured	
in	class	and	since	we	use	peer	instruction,	we	decided	to	use	clicker	questions.	The	long	term	effect	
will	be	measured	in	a	quiz	or	exam.	To	ensure	the	best	experimental	conditions,	there	should	be	
two	classes	that	are	taught	by	the	same	instructor	in	the	same	term.	These	two	classes	should	be	as	
similar	as	possible	with	respect	to	the	time	they	are	offered	and	student	composition.	However,	it	is	
impossible	to	control	student	composition	and	randomized	assignment	cannot	work	for	this	
project.		Therefore,	we	decide	to	alternate	the	two	sections	as	experimental	group	and	control	
group	throughout	this	project.	Thus	the	study	isn’t	a	strictly	controlled	experiment.	We	selected	
four	topics	and	the	experimental	design	is	shown	on	the	left.		

	

To	avoid	potential	confounding	factors	such	as	the	background	of	students	in	the	two	sections,	we	
compared	the	two	sections’	grade	distributions	before	the	start	of	the	experiment	and	found	no	
difference.		

	

Findings	
The	conclusion	of	this	study	based	on	observed	data	is	analogy	has	some	meaningful	benefits	in	the	
short	term	though	the	conclusion	is	not	definitive.	The	following	figure	shows	the	comparison	of	
control	group	and	experiment	group	on	three	concepts.		

	

No	long	term	effect	was	detected	in	this	study.		

	

Publications	and	Links	to	Relevant	Webpages	
1. Yingjun	Cao,	Leo	Porter,	and	Daniel	Zingaro.	Examining	the	Value	of	Analogies	in	Introductory	

Computing.	In	Proceedings	of	the	2016	ACM	Conference	on	International	Computing	Education	
Research.	2016		

2. J.	D.	Bransford,	A.	L.	Brown,	and	R.	R.	Cocking.	How	people	learn:	Brain,	mind,	experience,	and	
school.	National	Academy	Press,	1999.	

	35	

3. Y.	S.	Chee.	Applying	Gentner's	theory	of	analogy	to	the	teaching	of	computer	programming.	
International	Journal	of	Man-Machine	Studies,	38(3):347-368,	1993.	

4. D.	Gentner.	Structure-mapping:	A	theoretical	framework	for	analogy.	Cognitive	Science,	
7(2):155-170,	1983.	

5. D.	Gentner,	J.	Loewenstein,	and	L.	Thompson.	Learning	and	transfer:	A	general	role	for	
analogical	encoding.	Journal	of	Educational	Psychology,	95(2):393-405,	2003.	

6. S.	Iyer	and	S.	Murthy.	Demystifying	networking:	Teaching	non-majors	via	analogical	problem-
solving.	Proceedings	of	the	44th	ACM	Technical	Symposium	on	Computer	Science	Education,	
pages	77-82,	2013.	

7. K.	N.	Macfarlane	and	B.	T.	Mynatt.	A	Study	of	an	Advance	Organizer	As	a	Technique	for	Teaching	
Computer	Programming	Concepts.	In	Proceedings	of	the	19th	ACM	Technical	Symposium	on	
Computer	Science	Education,	pages	240-243,	1988.	

8. H.	Neeman,	L.	Lee,	J.	Mullen,	and	G.	Newman.	Analogies	for	teaching	parallel	computing	to	
inexperienced	programmers.	ACM	SIGCSE	Bulletin,	38(4):64,	2006.	

9. J.	P.	Sanford,	A.	Tietz,	S.	Farooq,	S.	Guyer,	and	R.	B.	Shapiro.	Metaphors	we	teach	by.	Proceedings	
of	the	45th	ACM	technical	symposium	on	Computer	science	education,	pages	585-590,	2014.		

	

	

